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Abstract. Hepatitis C is one of the illness which has affected a great deal of people all
over the world, it is suffered approximately by the world population’s three percent
and it has become an important social problem that has shown to be in continuous
growing. For that strong reason it is presented a control description based on Hamilton-
Jacobi Technique (HJT) and Sliding Mode Approach (SMA) working jointly with a
nonlincar observer (NO), carried out with Differential Neural Networks (DNN) and
Sliding Mode Approach, the one which has proven to be uscful in real medical
procedures 1o expense of the mathematical model that describes the Hepatitis C Virus
(HCV) dynamics is similar to the real Interferon Alpha 2b (IFNa —2b) patients
response. This Hamilton Jacobi and Sliding Mode Control (HISMC) gives us the exact
dosage that ought to be given 10 a patient with the purpose of maintaining controlled,
in very low levels, the viral load.

1. Introduction

Mathematics. control techniques and computational intelligence have been used in the
study of a great deal of process showing to be quite fruitful when having good results,
specially in biological sciences because computational and mathematical models are
helping biological scientist to know many aspects of the complex realm of living
matter [2], [3]. In particular cases, these mathematical principles have been used to
understand the life cycle of chronic viral infections development [4], [5] and the
behavior under several treatments of Hepatitis C infection [2]. [6). The simulation
results demonstrate how the present techniques are allowed to create software to solve
emerging problems of therapy optimization. however, many of these models do not
consider all possible systems variations and they strongly depend on the input function.
Hepatitis C Virus (HCV) has infected about 170 million of people around the world
[7], and this sickness could provoke serious injuries in hepatic tissue like cirrhosis.
which has a slow and progressive development and the ways of contracting this illness
are: sharing intravenous devices, sexual contact, using the parenteral pathway, etc. [8]).
Despite the important scientific and technological advances in medicine. there in no
cure or vaccine the one that control the virus or keep it contained until now. The main
method proven until now uses some pharmacological products as Lamivudine,
Adcfovir. Ribavirine and the Interferon alpha presented as Interferon alpha - 2a and
Interferon alpha 2b (IFN @ — 2b ) whose many studies has demonstrated that is the best
option to treat Hepatitis C [9]. There are some processes that have gain scientific
groups’ attention like chemical and biological ones (i.c. hepatitis C virus dynamics)
because exists several nonlinearities in they structure and almost always they are
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difTicult to model since the resulting models are often heavily dependent on the number
of states and the parameter sct. in addition to that they are very expensive in
computational time. Nonlinear black box models may overcome this problem because
this method does not use the internal process of the model; they just need the input-
output data pair. Artificial Neural Networks (ANN) are computational tools that have
obtained considerable attention in biological studies as good as academic research or
industrial applications. Their universal approximation abilities and the access to a wide
range of software tools qualify the ANN for the building of nonlinear dynamics black-
box models which can be applied as prediction models or state estimator devices. Two
types of ANN arc known: static. they are those that use the so-called back-propagation
technique (for example) [10]. [11] and dynamic neural networks [12], [13]. The second
approach, exploiting the feedback properties of the applied DNN, allows avoiding
many problems related to global extremum search converting the updating (training)
process to an appropriate feedback design. As it has already been seen in [14] to carry
out a control with DNN trajectory tracking. it is necessary o identify the estimated
states by a DNN identifier to guarantee the convergence of the error, what implies extra
computational spending. With Hamilton Jacobi’s Algorithm for trajectory tracking it is
possible to simplify this spending since this control algorithm uses the estimated states
of a DNN. The system’s behavior of prospective control is to displace the states such
that it is possible to make a track of a sign generated by some reference model. The
Sliding Mode Approach (SMA) allows powerful advantages than other identification
and control techniques like good transient behavior. global exponential stability with
small estimate error. capability to reject no modeled disturbances, insensitivity to plant
nonlinearity or parameter variations and remarkable stability and performance
robustness [15). [16]. Such in [17] the SMA approach is used to obtain the algebraic
(non differential) weight-learning procedure for on-line identification of a nonlinear
plant with completely available states. DNN observers containing sign-term are also
considered in [17] but in that approach. the weight adjustment is governed by a
"standard” Ordinary Differential Equation (ODE) with time varying parameters. No
relay terms are used within the learning procedure.

Fig. 1. Block diagram of the complex process.
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2. Methodology

The corrcspond.ing methodology was carried out in three procedures (figure 1): the first
one is the training process with a DNN identifier. then the estimate procedure using a
DNN observer and finally the proper control via Hamilton Jacobi and SMA.

2.1 Mathematical Model of the Hepatitis C Viral Load Dynamics

The mathematical model that describes the dynamics of the HCV and their changes
when IFN a - 2b is applied into patient is:

Ty =s=dl, ~(=mpTy; Iy =(0-mpT, -1, 7, =(-we)pl, - ¥ )

where 7 [miu/mL] describes changes in the number of target cells j, [mIU/mL]
represents variations in the number of productively infected cells and 1% [mlU/mL]
shows how viral load changes in time when IFN a —2b is applied as an input function
u, - The target cell’s production is given by the constant rate s (1000[ mL dia]""y and
these cells die with a constant rate ¢ (0.014[mL diu]"). 7 (0.001) is the possible effect of
the IFN @ —2b and the immunological system to contain the novo infection given by
g (3x107[mL ‘/,'a]") which is the constant rate associated with novo infection entrance,
once the target cells become productively infected cells. they die by the constant rate 5
(0.14[mL dia]'). £ (0.8) is the possible effect of the IFN to break viral production, p
(100 mL :Iiu]") is the constant rate of new virus reproduction and ¢ (6 2[mL d,',,]") is the
viral clearances constant rate. This analysis scarches the major initial effect of IFN
a —2b is to break viral production. This mathematical model plays an important roll
since the whole work carried out in this paper supposes that the model resembles each
other to the patients’ real response and this can be used for the corresponding computer
simulations.
HCV model (1) could be generalized, in a mathematical sense. as 2).
X = f(.\'l.ll,.l)+ g'“: Y =Cxp + -EZ.I (2)

where x eut is the state vector, y,€N” is a lincar combination of the state elements
that it is commonly assumed as the output system, u, e 9 is the external supply of IFN
a=2b. cewnr selected as ¢ =[0 0 1] since the viral load is the only measurable
variable using clinical tests like PCR probe [5]. The vectors &, and £,, represent the
state and output bounded (immeasurable) disturbances, i.e.,
Iz <y. A >0 y=12 that could be associated with the different medical
1210l = "0 : : 25

responses of cach patient and the experimental errors in the PCR probe [18].
Hereinafier it is supposed that the class of nonlinear functions in (2) satisfies all the
restrictions associated with the existence of the differential equation solution. Notice



28  R.F.Miranda. J. I. Chairez and A. Cabrera
that the nonlincar system (2) could always be described as: X = f,(X,. 1.1 |®)+]'
and [ = f(x,.u,. l)—f“(x,.u,.l|0)+§“ where  f,(x,.u,.1 |©) is is known as
» which can be selected according to the DNN theoretical results

"nominal dynamics
[17)and f isa vector called "no modelled dynamics" that should be minimized during

the common training process. According to DNN app
assumed as:

roach. the nominal dynamics are

f(x.u.1]@)=A"x+W"a(x)+ W, p(x)u
0= Aun. u:un, u/}llll en™"
W e R o) eR", W eR™, p()eRT

The activation functions o (-):=[o, ()] - and ¢():= [«p‘(-)]j - arce chosen

sigmoidal  functions i.c. o' (x)=a, (I +b,, cxp(—z X, )) and
=1

¢'(x)=da, (l +b,, cxp(—chx, D . The admissible control set for u, is supposed
11

10 be described as a state estimate feedback U™ = {u =u(X) ||M|K <y, +v, ”\'”‘}

where i is a estimated state and the matrix A, >0.

2.2. Procedure 1. Training Process

Let’s consider the dynamics of a patient infected with HCV without previous treatment
described by (2) where the entire state vector is known by any clinical method. So. a
DNN will be applied to derive the best possible approximation to this nonlinear model
just by using the input-output data pair. The mathematical description of this kind of
DNN is:

F = A% 4 W 00+ Wy 0 3
where ; csie is the state vector of the DNN , e is a measurable bounded control
action. 4cw~ is a Hurwitz matrix, ;e is the weight matrix for nonlincar state
feedback and y, <y~ is the input weight matrix. The vector field o). 9" - 9% is
designed to have clements with a monotonically increasing behavior just like sigmoid
functions. The function () is the transformation from w- to s~ which is constructed
by sigmoid activation functions in cach element. The input function () is assumed to

be bounded as 1, ' <. The designed identifier requires the next technical fact: There
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exists a positive defined matrix ¢ such that the Ricatti equation (4) has a positive
solution p=p’ >0.

A P+PA+YPRP+O =0 “@

Theorem 1. Considering the nonlinear system (2) and a model matching neural
network (3) whose weights are adjusted by the following matrix differential equations
[17]:
-, v i s T
W, = —AIIA,o'(.\-!)

-. ; Ty T
Wy, = 'AZPAI'/("I) o(x)
A =x - %

(%)

where g, and x, are matrices with positive entries, and p= 7 0 is the solution of the
algebraic Ricatti equation given by (4). Then the weights dynamics are bounded:
w,et. and <5 and they converge to their best possible values, i.e.
lim i, =0, mif, =0- Furthermore. it is possible to conclude that the identification
process is asymptotically consistent. i.c., limA, =0-

The main element to construct the convergence proof in this scheme is by
constructing a Lyapunov function in order to derive the learning laws. This Lyapunov
function (6) was selected as:

Vo= alpa, [0 KW, T [ K, ]

7 : ’ ’ (6)
w, =W -W. . j=Ln

The training process was carried out just one time using the available data for a
sick patient. This procedure generates the final values of the weights matrixes and
allows the correct selection of the free parameter of the differential neural network as
observer.

2.3. Procedure 2. Estimate Process

The estimate process gives us the necessary information required for controlling the
HCV. The importance here is to create a system that responds the nearest possible to a
real patient. considering different patients response to IFN a—2b supply The
nonlinear system representing the HCV dynamics is described by (2). Let's define a
DNN observer as follows:

d

i = A% w0 0y 00+ K (v =)+ KoSIGN (3, -5, )

di (7

Yy =Gy
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‘This DNN structure is almost the same than the DNN identifier just by adding two
new terms: the x multiplied by the output error. which gives the Luenberger type

observer and the x. multiplied by the sign of the error, which gives the sliding mode
structure. The () function (8) is referred to:

SIGN(=2) =

SIGN (3,) ("*'"("l;)""“’*”’(v'u))

v x, 20

(8)

Hereinafier the following assumption is supposed to be validated: the matrixes
pair (C, A) is obscrvable. This nonlinear estimator is supplied with its own updating

(learning) laws given by the nonlinear differential equations (9):
Dii =0 (W, 5.yt | W)
dt

n =
x=0(%), x =0y, k, >0
AT >0, W, =W, -,
M, =C'A, C+A;

9

N, =(cc’+51.)", §=12

where g~ >0 is the solution. if it exists, of the algebraic Ricatti equation given by

(10).

o Y
4, +("| ) R+RRE+Q =0
A" = (4" -K,C)
R =W+, + A} + A + KA K] {10
Q=LA +N" +2fA, +8 (A, +A, )+0,. Q>0

here A is the "best” matrix possible value. This was obtained by the training process.
In view of (7) structure. when ¢, = §, = CX, = 0, the ODE (7) should be attended as a
differential inclusion in Fillipov sense. This robust adaptive observer is a stale
estimator more advanced than one which only contains just one linear correction term
like Luenberger type observer, since the observer proposed here possesses higher
sensibility to external disturbances within a zone with a small estimation error upper
bound. As a test of likeness between the mathematical model and a real patient.
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different dose strategies have been given such as Gaussian, exponential and pulse
dosages. checking in this way that the DNN presents robustness 1o entrance variations.

2.4. Procedure 3. Control by Hamilton Jacobi and Sliding Modes

With Hamilton Jacobi’s Algorithm for the track of trajectory it is possible to simplify
the computational spending since this control algorithm uses the estimated states
obtained with a DNN. The system’s behavior of prospective control is to displace the
states such it is possible to make a track of a sign generated by some reference model
given by (11).

""m =j;"(.\’m,l) (”)

s s : > ; 17
Let's consider the following semi norm: l:l:,=|lmsup—j:'(l)(_):(l)zll where
0 e

©=¢ »0. The track of trajectory can be formulated as (12).

Jo=mind,  J=le-x [ +luf; 0

Then. for any 550, we obtain (13):

(13)

JU+plx=F, +1+77")|E-x, +u [}

The superior limit of the term |,_ ;¢ has been reached by the corresponding states
' (<
estimator. Selecting i -=q+5")rWe can formulate again the one control objective as

follows, minimizing of being possible, the term 13. For this purpose, let us define the
crror of state trajectories as (14).

A =x—x (14)

m & “m

In agreement with 12. in order to carry out the pursuit of the system, the DNN as
observer is presented as (15).

x=F (x,t)+ F(x,0)u (15)

For the desire dynamics and well-known 11, the tracking trajectory is completed
by the Hamilton Jacobi and Sliding Mode Control (HISMC) described by (16).

u" = F (x,0[-aSIGN(x-x,) +(/, (x,.0)— F, (x,1))] (16)
where a > 0. In this case. when considering the DNN as observer structure, we obtain:

F(x.0) = A3+ W,o(3)+ K, (y, - Cx, )+ K,SIGN (y, - C&)) and [0 =W,0(3).
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3. Numerical Simulation Results

In this section is presented the obtained simulation results, which are associated with
the identification. estimation and control processes, showing 'lhe importance of
computational programming in the study of hepatitis C viral dynamics.

3.1. Estimate Simulation Results

The following results show how the DNN estimator is able to track the trajectories in
spite of the fact that the entry changes. which prove by this way the robustness about
input variations. The first chart (Fig. 2) considers a dosage strategy called Gaussian
which show to have similar way than the one were obtained when exponential dosage

strategy were applied to the mathematical model.

exib
= -
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Fig. 2. Results when the treatment is considered as Gaussian signal. a) Target cells
concentration, b) Infected cells concentration and ¢) Viral Load.

3.2. Control Simulation Results

The aim of this work is to control the viral load in a patient infected with HCV by
means of the use and application of automatic control algorithms as HJT and SMA.
These techniques are allowed to give the exact dose of IFN a—2b that should be
applied to the patient with this illness. In order to carry out this objective, it was
necessary to have knowledge in their entirety HCV model. This complete knowledge
was obtained by using a neuroobserver based on DNN. Once obtained that, is necessary
10 have a reference that is adapted to complete the goal, in this paper a reference model
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was sclected with the intention of climinating all HCV and all infected cells of the
patient’s body in a few days as is shown in the figure 3.

!
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Time. days

Fig. 3. Simulation results of the control process. a) Target cells concentration, b) Infected cells
concentration and ¢) Viral Load.
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Fig. 4. IFN a - 2b dosage obtained by the HISMC in order to eliminate the HCV.

The computational algorithms proposed in this paper have demonstrate to be able
to control this nonlincar system, a prove of that is presented in figure 3 where it is
evident that HJISMC can reconstruct the desire IFN a—2b patients response
climinating in approximately 2 months more than 80% of HCV and infected productive
cells.
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To achieve that. the HISMC provide the HCV model. which is supposed to have
similar response than real patient. a strategy dosage the one that is shown in figure 4.
This dosage has a maximum value around 25miU. This dosage would be the same to
cach patient provided they had similar response: nevertheless, in this work it has been
considered that important fact into the interference vectors of the nonlinear system (2)
these vectors have been selected with relatively high levels with the purpose of likening
the reality.

4. Conclusion

In this work a Hamilton Jacobi Technique working jointly with Sliding Modes
Approach was suggested to obtain the precise dosage on IFN @ —2b in order to control
the viral load of a patient infected with Hepatitis C virus. These techniques were
applied to a nonlincar observer based on Differential Neural Networks and Sliding
Mode Technique getting by this way to diminish computational spending when no
having to identify the states given by the DNN as observer action that is necessary to
be able to check the nonlinear observer convergence. The received results of computer
simulation demonstrate the efficient capacity of applying these algorithms. Perhaps, in
a near future, this computational tools will be used in real medical procedures to be
able to control. the, until now no controllable, hepatitis C, which has ended up being an
important threat for the socicty.
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